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Abstract

Inspired by the ‘computable cross norm’ or ‘realignment’ criterion, we propose
a new point of view about the characterization of the states of bipartite
quantum systems. We consider a Schmidt decomposition of a bipartite density
operator. The corresponding Schmidt coefficients, or the associated symmetric
polynomials, are regarded as quantities that can be used to characterize bipartite
quantum states. In particular, starting from the realignment criterion, a family
of necessary conditions for the separability of bipartite quantum states are
derived. We conjecture that these conditions, which are weaker than the parent
criterion, can be strengthened in such a way to obtain a new family of criteria
that are independent of the original one. This conjecture is supported by
numerical examples for the low dimensional cases. These ideas can be applied
to the study of quantum channels, leading to a relation between the rate of
contraction of a map and its ability to preserve entanglement.

PACS numbers: 03.67.−a, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The relation between the state of a composite quantum system as a whole and the configuration
of its parts is a very peculiar feature of quantum theory. As recognized since the early stages
of development of the theory [1–3], this is a consequence of the tensor product structure
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of the state space of a composite quantum system. This feature of quantum mechanics
has its most evident manifestation in the fact that it allows the presence of non-classical
correlations, i.e. of entanglement, between the subsystems of a composite system. Nowadays,
we may say that quantum entanglement is not only regarded as a key for the interpretation
of quantum mechanics or as a mere scientific curiosity, but also as a fundamental resource
for quantum information, communication and computation tasks [4, 5]. However, despite the
great efforts made by the scientific community in the past few decades, there are still several
open issues regarding the mathematical characterization of composite quantum states, even in
the ‘elementary case’ of a bipartite system with a finite number of levels.

A major challenge is to characterize those states of a bipartite system that are entangled.
According to the definition of Werner [6], entangled (mixed) states differ from separable
states since they cannot be prepared, not even in principle, from product states by means of
local operations and classical communication only. In mathematical terms, a (mixed) state
ρ̂—a positive (trace class) operator of unit trace—in a composite Hilbert space H = HA ⊗HB

is called separable if it can be represented as a convex sum of product states:

ρ̂ =
∑

i

pi ρ̂
A
i ⊗ ρ̂B

i , (1)

with pi � 0 and
∑

i pi = 1; otherwise, ρ̂ is said to be entangled. We remark that, if ρ̂ is
separable, decomposition (1) is in general not unique, and the smallest number of terms in the
sum (usually called cardinality), due to Caratheodory’s theorem, is not larger than the squared
dimension of the total Hilbert space of the system H (see [7]).

Since quantum entanglement is a very important subject, also in view of its several
potential applications, separability criteria are regarded as extremely precious tools. Among
a plethora of proposed separability criteria—i.e. suitable conditions satisfied by all separable
states whose violation allows us to detect entanglement (see, for instance, [8–11])—the present
contribution is mainly inspired by the criterion that was proposed in [12] with the name of a
‘realignment criterion’ (RC) and in [13] with the name of a ‘computable cross norm’ criterion.
As we will try to argue, the RC brings attention to the role played by the Schmidt coefficients
[18] of a bipartite quantum state in the characterization of entanglement. Trying to shed light
on this role will be the main goal of our contribution.

The paper develops along the following lines. In section 2, we introduce a ‘Schmidt
equivalence relation’ in the set of states of a bipartite quantum system, and we show the link
between this notion and the RC. Section 3 is devoted to the characterization of the Schmidt
equivalence classes. We follow two different approaches: the characterization of some groups
acting on the Schmidt equivalence classes and the analysis of the local geometry of these
equivalence classes regarded as manifolds. A family of separability criteria are presented
in section 4, which are extensions of the RC. These criteria are based on the ‘symmetric
polynomials’ in the Schmidt coefficients, and are weaker than the parent criterion. In
section 5, the well-known correspondence between quantum states and quantum maps (see,
e.g., [14–16]), i.e. completely positive trace-preserving (CPT) maps, is considered, and
a straightforward application of the derived family of separability criteria to the study of
CPT maps is discussed. Through this correspondence, separable states are associated with
entanglement breaking (EB) channels [17]. The proposed family of criteria, applied to this
context, leads to a purely geometrical characterization of EB maps. In section 6, we formulate
the conjecture that the proposed criteria can be strengthened in order to obtain new necessary
conditions for separability which are independent of the parent RC. Numerical examples in
support of this thesis are provided in section 7 for low dimensional bipartite systems.
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2. Schmidt equivalence classes of states of a bipartite quantum system

Let us consider a bipartite, finite-dimensional, complex Hilbert space H = HA ⊗
HB—HA ∼= C

NA ,HB ∼= C
NB , NA, NB � 2—and the corresponding real vector spaces of

Hermitian operators LR(H),LR(HA) and LR(HB) (the spaces of observables) in H,HA and
HB, respectively, that are naturally endowed with a scalar product, namely the bilinear Hilbert–
Schmidt (HS) product:

〈Â, B̂〉HS = tr(ÂB̂), (Â, B̂ Hermitian). (2)

In particular, the density operators—i.e. the positive operators of unit trace—in H(HA and
HB, respectively) can be regarded as elements of the real vector space LR(H)(LR(HA) and
LR(HB), respectively), in which they form a convex body that will be denoted by D(H).
Observe that LR(H) = LR(HA) ⊗ LR(HB), with LR(HA) ∼= R

N2
A and LR(HB) ∼= R

N2
B . The

HS product allows us to write a (nonunique) Schmidt decomposition [18] of a density operator
ρ̂ ∈ D(H), i.e.7

ρ̂ =
d∑

k=1

λkF̂
A
k ⊗ F̂ B

k , λ1 � λ2 � · · · � λd � 0, (3)

where

tr
(
F̂ A

hF̂
A
k

) = δhk = tr
(
F̂ B

hF̂
B
k

)
, h, k ∈ {1, . . . , d}, (4)

and the real positive numbers {λk}d
k=1 are the (uniquely determined) Schmidt coefficients (in

short, SCs). Note that the number of terms in the sum equals d = min
{
N2

A, N2
B

}
(we will

also set D = max
{
N2

A, N2
B

}
). The definition of the SCs of a bipartite density operator is

the natural generalization of the standard definition for pure states (see, for instance, [19]).
It is worth stressing that, since the operators forming the orthonormal systems

{
F̂ A

k

}d

k=1 and{
F̂ B

k

}d

k=1 (in LR(HA) and LR(HB), respectively) are Hermitian, the operators
{
F̂ A

k ⊗ F̂ B
k

}d

k=1
are observables. Hence—at least in principle—the SCs are physically measurable quantities:

λk = tr
(
ρ̂F̂ A

k ⊗ F̂ B
k

)
. (5)

The set of ‘local’ operators
{
F̂ A

k ⊗ F̂ B
k

}d

k=1 is also referred to as local orthogonal observables
[20]. Decomposition (3) has been recently considered—see [21]—in connection with the
formulation of new separability criteria.

We observe that the convex body D(H) can also be regarded as immersed in the complex
vector space L(H) of linear operators in H, vector space that can be endowed with the
sesquilinear HS product (denoted, again, as 〈·, ·〉HS). Then, one can consider a Schmidt
decomposition of a density operator ρ̂ in H with respect to the complex Hilbert space L(H).
It is clear that such a decomposition will contain the same SCs as decomposition (3), but this
time will involve an orthonormal system of, in general, non-Hermitian operators.

Given a bipartite density operator, one can uniquely determine its SCs. On the other hand,
it is clear that the SCs do not identify a unique quantum state. It is then natural to formulate
the following definition.

Definition 1 (Schmidt equivalence relation). We say that two bipartite density operators are
Schmidt equivalent if they share the same set of Schmidt coefficients.

Then the convex set of density operators in the Hilbert space H—which will be denoted by
D(H)—is partitioned into Schmidt equivalence classes.

7 We remark that actually any operator in LR(H) admits a Schmidt decomposition.

3



J. Phys. A: Math. Theor. 41 (2008) 415301 C Lupo et al

It is known that a bipartite pure state is completely characterized, with respect to
entanglement, by the corresponding SCs [22]. Although the same characterization cannot
be extended to a generic state, it is reasonable to suppose that there exists some relation
between the SCs of a bipartite density operator and the entanglement properties of this state,
and to address the following questions: ‘What relevant properties are encoded by the SCs of a
bipartite density operator, and how can one characterize the Schmidt equivalence classes?’ In
the following, we will try to analyze these questions and provide some reasonable answers.

A first observation is that the SCs determine the purity of a state. Let us recall that the
purity is defined as the trace of the square of the density operator:

P(ρ̂) := tr(ρ̂2); (6)

hence, P(ρ̂) ∈]0, 1],∀ρ̂ ∈ D(H). It follows from the definition of Schmidt decomposition
that the purity equals the sum of the squares of the SCs:

1

NANB
� P(ρ̂) = 〈ρ̂, ρ̂〉HS =

d∑
k=1

λ2
k � 1. (7)

Thus, the purity is the simplest property which is (completely) described by the SCs of a
density operator. Another relevant fact is the existence of a link between the separability of a
density operator and its SCs.

Indeed, the ‘realignment criterion’ (in short, RC, see [12, 13]; also see [19], where a
generalization of the RC is obtained) establishes a necessary condition for the separability of
a quantum state (or a sufficient condition for the nonseparability). It can be formulated in
various equivalent ways. From our point of view, it can be regarded as a condition on the SCs
of a separable density operator ρ̂. Precisely, it imposes an upper bound for the sum of its SCs.

Theorem 1 (the ‘realignment criterion’). If a bipartite density operator ρ̂ is separable, then
its Schmidt coefficients {λk}d

k=1 satisfy the following inequality:

d∑
k=1

λk � 1. (8)

The RC is easily implementable. In particular, in [12], the notion of a realigned matrix ρR was
introduced which is associated with the bipartite density operator ρ̂ in order to compute the lhs
of inequality (8). Fixed orthonormal bases {|n〉}n=1,...,NA and {|ν〉}ν=1,...,NB in the local Hilbert
spaces HA and HB, respectively, and assuming that ρ(mμ)(nν) is the representative matrix of
the density operator ρ̂ with respect to the product basis {|n〉 ⊗ |ν〉}ν=1,...,NB

n=1,...,NA
—where (mμ) and

(nν) are double indices—the corresponding realigned matrix (with respect to the given basis)
is defined as

ρR
(mn)(μν) := ρ(mμ)(nν). (9)

It turns out that the SCs of ρ̂ are the singular values of the realigned matrix ρR, see [19].
Precisely, consider a singular value decomposition of the realigned matrix, i.e.

ρR = U�V, (10)

where U and V are unitary matrices, belonging respectively to the unitary groups U
(
N2

A

)
and

U
(
N2

B

)
, and � is a rectangular matrix such that its nonvanishing entries are positive and placed

along the principal diagonal only. Then, the diagonal entries of � are the singular values
of ρR, hence the SCs of ρ̂. At this point, observing that the singular values of the realigned
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matrix ρR coincide with the eigenvalues of the positive matrix |ρR| =
√

ρR†ρR, one concludes
that inequality (8) can also be written as

‖ρR‖tr = tr(|ρR|) � 1. (11)

Given a density operator ρ̂ ∈ D(H), we will denote by Sρ̂ the Schmidt equivalence class
containing ρ̂. Beside the Schmidt equivalence class Sρ̂ , we will consider the extended Schmidt
equivalence class containing ρ̂, namely the set Sext

ρ̂ of all the Hermitian operators in H that
share with ρ̂ the same set of Schmidt coefficients. Thus, we have that Sρ̂ = Sext

ρ̂ ∩ D(H).

3. Characterization of the Schmidt equivalence classes

The aim of the present section is to give a basic characterization of the Schmidt equivalence
classes of states; see definition 1. In this regard, one can adopt two different approaches.
On one hand, one can try to characterize some ‘natural’ groups for which an action on the
Schmidt equivalence classes is defined; see subsection 3.1. On the other hand, one can regard
the Schmidt equivalence classes as manifolds and study their local geometry considering
the action of the local orthogonal groups; see subsection 3.2. Although the results that we
obtain are still somewhat ‘preliminary’, we think that it is worthwhile to report them since a
description of Schmidt equivalence classes seems to be completely missing in the literature.

3.1. Groups acting on the Schmidt equivalence classes

Note that, since LR(H),LR(HA) and LR(HB) are real Hilbert spaces, the unitary
(super)operators in these spaces belong to orthogonal groups. For instance, a unitary operator
in LR(H) belongs to the orthogonal group O

(
N2

AN2
B

)
. The class of unitary operators in LR(H)

that are decomposable as the tensor product of two unitary operators in LR(HA) and LR(HB),
respectively—i.e. of the form T̂A ⊗ T̂B, with T̂A in O

(
N2

A

)
and T̂B in O(N2

B)—will be denoted by
O ⊗ O(H). It is clear that the maps in O ⊗ O(H) preserve the SCs of every element of LR(H),
but, in general, T̂A ⊗ T̂B(D(H)) 
⊂ D(H). Note, moreover, that the set O ⊗ O(H) is a group
(isomorphic to the direct product O(N2

A) × O(N2
B)) with respect to the usual composition of

maps. The orbit in LR(H), under the action of this group, passing through ρ̂ ∈ D(H), will be
denoted by S̃ρ̂ ; i.e.

S̃ρ̂ := {T̂ (ρ̂) ∈ LR(H): T̂ = T̂A ⊗ T̂B ∈ O ⊗ O(H)}. (12)

Proposition 1. The orbit S̃ρ̂ of the group O ⊗ O(H) through ρ̂ ∈ D(H) coincides with the
extended Schmidt equivalence class containing ρ̂:

S̃ρ̂ = Sext
ρ̂ . (13)

It follows that

Sρ̂ = S̃ρ̂ ∩ D(H). (14)

Therefore, two states ρ̂ and σ̂ in D(H) are Schmidt equivalent if and only if

ρ̂ = T̂A ⊗ T̂B(σ̂ ), (15)

for some unitary operators T̂A and T̂B in LR(HA) and LR(HB), respectively.

Proof. As already observed, given ρ̂ ∈ D(H), for every T̂ in the group O ⊗ O(H), T̂ (ρ̂)

belongs to Sext
ρ̂ ; hence, S̃ρ̂ ⊂ Sext

ρ̂ . On the other hand, let ρ̂ = ∑d
k=1 λkF̂

A
k ⊗ F̂ B

k be a Schmidt

decomposition of ρ̂ and Ĉ = ∑d
k=1 λkĜ

A
k ⊗ ĜB

k a Schmidt decomposition of an arbitrary

5
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element Ĉ of Sext
ρ̂ . Then, for every couple of unitary operators T̂A and T̂B in LR(HA) and

LR(HB), respectively, such that T̂A(F̂ A
k ) = ĜA

k and T̂B(F̂ B
k ) = ĜB

k , k = 1, . . . , d, we have
T̂A ⊗ T̂B(ρ̂) = Ĉ. Hence, S̃ρ̂ ⊃ Sext

ρ̂ . �

The set of all the maps of the form T̂A ⊗ T̂B—with T̂A and T̂B unitary operators in LR(HA)

and LR(HB), respectively—such that Sρ̂ is stable under the action of T̂A ⊗ T̂B, i.e. such that

T̂A ⊗ T̂B(Sρ̂ ) ⊂ Sρ̂ , (16)

is a semigroup (with respect to composition) with identity, contained in the group O ⊗ O(H),
which will be denoted by O ⊗ Ost(ρ̂). The subset O ⊗ Oinv(ρ̂) of O ⊗ Ost(ρ̂) defined by

O ⊗ Oinv(ρ̂) := {T̂A ⊗ T̂B ∈ O ⊗ Ost(ρ̂): (T̂A ⊗ T̂B)† ∈ O ⊗ Ost(ρ̂)} (17)

is a group. It is easy to check that O ⊗ Oinv(ρ̂) coincides with the subset of O ⊗ Ost(ρ̂)

containing those maps that leave Sρ̂ invariant, i.e.

O ⊗ Oinv(ρ̂) = {T̂A ⊗ T̂B ∈ O ⊗ Ost(ρ̂): T̂A ⊗ T̂B(Sρ̂ ) = Sρ̂}. (18)

As an example of an operator belonging to O ⊗ Oinv(ρ̂), for all ρ̂ ∈ D(H), consider the linear
map ĴA ⊗ ĴB:LR(H) → LR(H), with ĴA and ĴB unitary operators defined by

ĴA:LR(HA) � Â �→ Ĵ AÂĴ A ∈ LR(HA), ĴB:LR(HB) � B̂ �→ Ĵ BB̂Ĵ B ∈ LR(HB), (19)

where Ĵ A and Ĵ B are ‘local’ complex conjugations (i.e. self-adjoint anti-unitary operators) in
HA and HB, respectively. The maps Ĵ A and Ĵ B are partial transpositions, so that the map
ĴA ⊗ ĴB is the transposition associated with a tensor product basis in HA ⊗ HB (recall that
transposition, as complex conjugation, is a basis-dependent notion). As is well known, a
transposition is a positive trace-preserving map (in short, PT map), and it is self-adjoint with
respect to the HS scalar product. Therefore, the self-adjoint unitary operator ĴA ⊗ ĴB is
contained in the group O ⊗ Oinv(ρ̂), for all ρ̂ ∈ D(H).

It is natural to wonder how states belonging to the same Schmidt equivalence class can
be connected by physically realizable transformations. We will then consider the semigroup
with identity of PT maps in LR(H), which will be denoted by PT(H). It is worth defining the
following subset of PT(H):

PTS(H) := {Ê ∈ PT(H): Ê bijective, Ê−1 ∈ PT(H), Ê(Sρ̂ ) = Sρ̂ ,∀ρ̂ ∈ D(H)}. (20)

It is clear that the set PTS(H) is a group.
As already observed, unitary maps in LR(H) of the form T̂A ⊗ T̂B—with T̂A and T̂B unitary

operators in LR(HA) and LR(HB), respectively—preserve the SCs of every element of LR(H),
but, in general, T̂A ⊗ T̂B(D(H)) 
⊂ D(H). It is therefore natural to consider the class of linear
maps in LR(H) belonging to the set O ⊗ O(H)∩ PT(H). It is clear that this set is a semigroup
(with respect to composition of maps) with identity contained in O ⊗ Ost(ρ̂). We will now
show that it is actually a group which is a subgroup of O ⊗ Oinv(ρ̂). We need two preliminary
results; the proof of the first one is trivial.

Lemma 1. The inverse of a bijective trace-preserving map from LR(H) onto LR(H) is
trace-preserving.

Lemma 2. A positive linear map T̂ :LR(H) → LR(H) which is unitary transforms the convex
cone of positive operators inH onto itself; therefore, T̂ † is a positive map. Hence, in particular,
if a linear map belonging to O⊗O(H) is a positive map, then its inverse is a positive map too.

Proof. We will prove the statement by contradiction. Suppose that B̂ = T̂ (Â) is positive
and assume that Â is not a positive operator. Then, for some ψ ∈ H, we should have

6
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that 〈ψ, Âψ〉 < 0; hence, tr(T̂ (|ψ〉〈ψ |)T̂ (Â)) = tr(|ψ〉〈ψ |Â) = 〈ψ, Âψ〉 < 0, where we
have used the unitarity of T̂ . On the other hand, since T̂ is a positive injective linear map,
	̂ ≡ T̂ (|ψ〉〈ψ |) is a nonzero positive operator, so that it admits a decomposition of the
form	̂ = ∑K

k=1 εk|φk〉〈φk|, where {φk}Kk=1 is an orthonormal system and {εk}Kk=1 is a set of
strictly positive numbers. Therefore, since B̂ is positive, we have

tr(	̂B̂) =
K∑

k=1

εk tr(|φk〉〈φk|B̂) =
K∑

k=1

εk〈φk, B̂φk〉 > 0. (21)

But this is in contrast with the inequality tr(	̂B̂) < 0 previously found.
�

From lemmas 1 and 2, one immediately obtains the following result.

Proposition 2. The inverse of a linear map belonging to the set O ⊗ O(H) ∩ PT(H) belongs
to this set too. Hence, O ⊗ O(H) ∩ PT(H) is a subgroup of O ⊗ Oinv(ρ̂).

We now consider the set PTO ⊗ PTO(H) consisting of those linear maps in LR(H) of
the form ÊA ⊗ ÊB, where ÊA and ÊB are linear maps in LR(HA) and LR(HB), respectively,
that are positive, trace-preserving and unitary. An analogous definition holds for the set
CPTO ⊗ CPTO(H), with the ‘local maps’ ÊA and ÊB assumed to be completely positive rather
than simply positive. It is clear that the sets PTO ⊗ PTO(H) and CPTO ⊗ CPTO(H) are
semigroups with identity. We will see that they are actually groups. Also consider the group
of local unitary transformations:

O ⊗ O(H) := {T̂ ∈ O ⊗ O(H): T̂ (Â) = (Û ⊗ V̂ )Â(Û † ⊗ V̂ †),∀Â ∈ LR(H),

for some unitary operators Û , V̂ in LR(HA),LR(HB) respectively}, (22)

which is obviously a subgroup of both PTO ⊗ PTO(H) and CPTO ⊗ CPTO(H). In a similar
way, one defines the group of local unitary–anti-unitary transformations O ⊗ O(H) (include
local anti-unitary operators Û , V̂ on the rhs of (22)). An example of a map that belongs to
O ⊗ O(H), but not to O ⊗ O(H), is the tensor product ĴA ⊗ ĴB of two partial transpositions
ĴA and ĴB.

Proposition 3. The set PTO ⊗ PTO(H) is a group (with respect to composition of maps);
hence, it is a subgroup of the group O ⊗ O(H) ∩ PT(H).

Proof. Given a map ÊA ⊗ ÊB in PTO ⊗ PTO(H)—where ÊA, ÊB are linear maps in
LR(HA),LR(HB), respectively, that are positive, trace-preserving and unitary—the inverse
map Ê−1

A ⊗ Ê−1
B is positive; to show this, apply lemmas 1 and 2 identifying the (generic)

Hilbert space H with the local Hilbert spaces HA and HB.
�

A Kadison automorphism is a bijective map from D(K)—the convex set of density
operators in a Hilbert space K—onto itself that is convex linear. We now state as a lemma a
property of this kind of automorphisms that can be obtained ‘by duality’ from a well-known
result due to Kadison [23] (concerning C∗-algebras).

Lemma 3 (Kadison). Every Kadison automorphism Ê :D(K) → D(K) is of the form

Ê(ρ̂) = T̂ ρ̂T̂ †, ∀ρ̂ ∈ D(K), (23)

where T̂ is a unitary or anti-unitary operator.

Assume that the Hilbert space K is finite-dimensional. Then, since any operator Ĉ ∈ LR(K)

can be written as Ĉ = c1ρ̂1 − c2ρ̂2, for some ρ̂1, ρ̂2 ∈ D(K) and some non-negative numbers

7
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c1, c2, it is clear that every Kadison automorphism Ê :D(K) → D(K) extends (uniquely) in a
natural way to a linear map in LR(K); conversely, a linear map in LR(K) which is bijective on
D(K) can be regarded as a Kadison automorphism.

Let us denote by O(H) the group of unitary–anti-unitary transformations in LR(H). We
are now able to prove the following result.

Theorem 2. The group O ⊗ O(H) ∩ PT(H) coincides with the group O ⊗ O(H) ∩ O(H). The
group PTO ⊗ PTO(H) coincides with the group O ⊗ O(H). The set CPTO ⊗ CPTO(H) is
a group which coincides with the group of local unitary transformations O ⊗ O(H). All the
mentioned groups are subgroups of PTS(H), and PTS(H) is a subgroup of O(H).

Proof. It is clear that the group O ⊗ O(H) ∩ O(H) is a subgroup of O ⊗ O(H) ∩ PT(H).
On the other hand, by lemmas 1 and 2, a map in the group O ⊗ O(H) ∩ PT(H) is a Kadison
automorphism; hence, by lemma 3, it is contained in O ⊗ O(H) ∩ O(H). This proves the first
assertion of the theorem. Next, given a map ÊA⊗ÊB in PTO⊗PTO(H)—where ÊA, ÊB are linear
maps in LR(HA),LR(HB), respectively, that are positive, trace-preserving and unitary—the
maps ÊA and ÊB are Kadison automorphisms. Hence, by lemma 3,

ÊA(Â) = Û ÂÛ †, ∀Â ∈ LR(HA), ÊA(B̂) = V̂ B̂V̂ †, ∀B̂ ∈ LR(HB), (24)

for some unitary or anti-unitary operators Û , V̂ in LR(HA),LR(HB), respectively. Therefore,
the group PTO⊗PTO(H) coincides with the group O⊗O(H). Note that, since an anti-unitary
operator is the composition of a unitary operator with a complex conjugation, if in (24) we
let the operators Û , V̂ be anti-unitary, we have that the maps ÊA, ÊB are the composition of
unitary transformations with transpositions. Transpositions are positive but not completely
positive maps; hence, the set CPTO ⊗ CPTO(H) coincides with the group of local unitary
transformations O ⊗ O(H). Finally, observe that the maps in the group PTS(H) are Kadison
automorphisms. Thus, by lemma 3, the last assertion of the theorem follows.

�

3.2. Local analysis

In [24], the authors considered the Schmidt decomposition of pure states, and, in that setting,
analyzed the geometry of the sets of Schmidt-equivalent pure states (that turn out to be
differentiable manifolds). Since two pure states are Schmidt equivalent if and only if they
are mutually convertible via local unitary transformations, they called such manifolds ‘the
manifolds of interconvertible states’. The aim of the present section is to apply the same
line of reasoning to study the structure of the manifolds of Schmidt-equivalent (mixed) states.
Here we assume for simplicity that NA = NB = N ; hence d = N2. This is not necessary for
our purposes but it allows a convenient simplification of our formulae.

As is discussed below, there is a major limitation to the straightforward extension of the
aforementioned results from pure to mixed states. The definition of SCs is based on the fact
that density operators are elements of a vector space. On the other hand, they are constrained
to be positive operators (of unit trace) because of their physical interpretation. This leads
to the main difference between the results in [24] and our forthcoming discussion: while in
[24] the geometry of the manifolds of interconvertible states can be characterized globally,
here we are limited to a ‘local’ analysis (i.e. we are forced to consider transformations in a
neighborhood of the identity).

As stated in proposition 1, the transformations of the form ρ̂ �→ T̂ (ρ̂), where T̂ belongs
to O ⊗ O(H), preserve the SCs. The converse is also true: if two operators have the same SCs
then they are connected by a map in the group O⊗O(H). Therefore, we can build the different

8
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equivalence classes acting locally on ‘fiducial states’ with the group O ⊗ O(H). Actually, we
need to consider the component connected to the identity of this group, which is isomorphic
to (and will be identified with) the Lie group SO(d) × SO(d). We then need to impose two
conditions on the local (i.e. close to the identity) transformations: (a) the positivity of a fiducial
state ρ̂ must be preserved and (b) the trace of ρ̂ has to be preserved as well. The first is a
global constraint that does not ‘reduce the number of dimensions’, although characterizing a
neighborhood of the identity in SO(d) × SO(d) preserving the positivity of a given fiducial
state is a challenging open problem. The second constraint, normalization, is a local constraint
that reduces the dimension of the manifold by 1: the condition that tr(ρ̂) = 1 amounts to
fixing the projection of the vector ρ̂ along the direction Î. Let us consider an orthonormal basis

in the real Hilbert space of the form
{
Î

A ⊗ Î
B
, F̂ A

i ⊗ Î
B
, Î

A ⊗ F̂ B
j , F̂

A
i ⊗ F̂ B

j

}
1�i,j�d−1; clearly,

tr
(
F̂ A

i

) = 0 = tr
(
F̂ B

j

)
, because of the orthogonality condition with Î = Î

A ⊗ Î
B
. Given a state

ρ̂ ∈ D(H), we have

ρ̂ = Î
A ⊗ Î

B

d
+

d−1∑
i=1

αA
i F̂ A

i ⊗ Î
B

+
d−1∑
i=1

αB
i Î

A ⊗ F̂ B
i +

d−1∑
i,j=1

βij F̂
A
i ⊗ F̂ B

j . (25)

The infinitesimal action of the Lie group SO(d) × SO(d) on the basis elements is of the form

F̂
A,B
i �→ (

δij + φ
A,B
ij

)
F̂

A,B
j + ε

A,B
i Î

A,B
, (26)

Î
A,B �→ Î

A,B − ε
A,B
i F̂

A,B
i , (27)

where contraction of repeated indices is understood. Here φA and φB are real, (d−1)× (d−1)

antisymmetric matrices and εA and εB are real (d − 1)-dimensional vectors.
Hence, by applying an infinitesimal transformation to SO(d) × SO(d) with generators

(φA, εA;φB, εB) it is not difficult to see that the coefficient of Î = Î
A ⊗ Î

B
—and hence

tr(ρ̂)—undergoes the following change:

δ tr(ρ̂) = αA
i εA

i + αB
i εB

i + βij ε
A
i εB

j . (28)

In this equation we have kept the leading non-trivial infinitesimal changes, discarding those of
the type (εA)2 and (εB)2. This is the correct expansion in the space of jets of regular functions
of two vectors with nonvanishing gradients. Equation (28) defines a surface similar to an
hyperboloid. In order to visualize it, one can simply take ε

A,B
i = δ1iε

A,B. For a simple choice
of α, β, the result is plotted in figure 1. Clearly, connection to the identity implies that only
the branch containing the origin has to be considered.

Therefore, the vectors εA,B are constrained while the matrices φA,B are unconstrained8.
Assuming that the SCs are all different (i.e. that ρ̂ is a ‘typical state’), one finds out that the
Schmidt equivalence class Sρ̂ is locally diffeomorphic to

SO(d) × SO(d)

SO(2)
, (29)

where the subgroup SO(2) is generated by the linear combination of the coefficients{
εA
i , εB

i

}d−1
i=1 derived above. Then, the dimension of the manifold Sρ̂ is

dρ̂ = 2
d(d − 1)

2
− 1 = d2 − d − 1. (30)

8 We neglect here the case α
A,B
i = 0, βij 
= 0. In this atypical case, we need to keep terms of O(ε2) in the

transformation law of Î
A,B

. Once this is done, one checks that the codimension is still 1. The really degenerate case

α = β = 0, instead, corresponds to the class of equivalence of a single point ρ̂ = Î
A ⊗ Î

B
/d, with dimension 0. This

point has to be considered as the ‘tip’, the extremal point of the space of states.

9
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εA

εB

0 0.5

0

0.5

Figure 1. An example of the parameter space of allowed orthogonal transformations. Only the
branch of the hyperboloid which contains the origin must be considered.

It is easy to see how this counting is consistent with the intuition that changing one of the SCs
λ1, . . . , λd of ρ̂ brings this operator out of the equivalence class Sρ̂ . Indeed, subtracting the
number of the SCs from the number of dimensions—(d2 −1)−d = d2 −d−1—we obtain the
dimensionality of a typical orbit. For example, take the case of 2-qubits: NA = NB = 2. We
have d = 4 and d2 − 1 = 15; hence, the manifold Sρ̂ , for a typical bipartite state ρ̂ ∈ D(H),
is (15 − 4 = 11)-dimensional.

If ρ̂ ∈ D(H) is a non-typical state, the dimension of the manifold Sρ̂ is smaller than
d2 − d − 1. In fact, in the case where the d SCs of ρ̂ cluster into subsets of m1, . . . , mh

identical values—by means of an argument analogous to that adopted in [24]—one can check
that there is a ‘local stabilizer subgroup’ isomorphic to SO(m1) × · · · × SO(mh); therefore, in
this case, Sρ̂ is locally diffeomorphic to

SO(d) × SO(d)/SO(2)

SO(m1) × · · · × SO(mh)
. (31)

Then, the dimension dρ̂ of Sρ̂ is given, in general, by

dρ̂ = d(d − 1) − 1 −
h∑

k=1

mk(mk − 1)

2
. (32)

In order to make the above argument rigorous, one should actually prove that the Schmidt
equivalence classes are actually differentiable manifolds. In that case, our previous argument
would provide the correct dimension of such manifolds. As we learn from mathematicians
[25], a standard tool for characterizing a subset of a differentiable manifold (like the manifold
of Hermitian operators in H) as a submanifold is the study of the (possible) Lie groups acting
transitively on the given subset and of the associated stabilizer subgroups. Therefore, suitably
improving the analysis of subsection 3.1 may allow us to achieve such a remarkable result.

4. Entanglement and symmetric polynomials in the Schmidt coefficients

We will now consider the role played by Schmidt coefficients in the characterization of
entanglement. Our starting point will be the realignment criterion (RC). It is natural to
wonder if the whole set of the SCs of a bipartite state may allow a stronger characterization of
entanglement with respect to the RC.

10
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As we have seen, the RC, like other separability criteria, is based on the evaluation of a
single functional in terms of which a necessary condition for separability can be stated. In the
case of the RC, this functional coincides with the sum of the Schmidt coefficients. On the other
hand, the evaluation of a single functional might not be sufficient to completely determine the
presence of entanglement [22] (from a more general point of view, we may say, to characterize
classical and quantum correlations). In particular, as the RC is only a necessary condition for
separability, one is led to consider additional functionals in order to gain information about
the presence of entanglement.

Here we propose to consider the symmetric polynomials in the Schmidt coefficients,
namely

M[1] =
d∑

k=1

λk

M[2] =
d∑

h 
=k=1

λhλk

· · ·
M[l] =

∑
{i1,i2···il}

λi1λi2 · · · λil

· · ·

M[d] =
d∏

k=1

λk.

(33)

Note that the RC involves the symmetric polynomial of degree 1.
A naive argument says that if the sum of the Schmidt coefficients is equal to S, their

product is upper bounded by (S/d)d. Hence, we have the following condition for a separable
density matrix ρ:

ρ̂ separable ⇒ M[d] �
(

1

d

)d

, (34)

which obviously defines a weaker separability criterion. Analogously, one can consider
the symmetric polynomial of degree l and obtain the following necessary conditions for
separability:

ρ̂ separable ⇒ M[l] � yl(d) =
(

d

l

) (
1

d

)l

. (35)

In particular, if ρ̂ has Schmidt rank R, we can write the conditions

M[l] �
(

R

l

) (
1

R

)l

(36)

for l � R, while M[l] = 0 for l > R.
It is worth noting that the symmetric polynomials {M[l]} are in one-to-one correspondence

with the Schmidt coefficients {λk}. Inequalities (35) are consequences of the RC. Hence, as
separability criteria, they are weaker than the parent one. Section 6 will be devoted to the
study of possible stronger generalization.

11
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Finally, we note that in the approach followed in [12], which makes use of the associated
realigned matrix ρR, the symmetric polynomials are the coefficients of the characteristic
polynomial:

χρR(x) = det(|ρR| − xI) =
d∑

l=1

M[l](|ρR|)(−x)d−l , (37)

where, with abuse of notation, we indicated with M[l](A) the principal minor of order l of the
matrix A.

5. Quantum states and quantum maps

This section is devoted to the application of the ideas presented in section 4 to the study
of quantum channels, i.e. CPT maps. In order to do that, we exploit the well-known
correspondence between quantum channels and quantum states (see [14–16]).

Here we consider quantum systems with Hilbert spaces HA and HB, the set of states in the
composite system D(HA ⊗ HB) and the set of CPT maps from system B to system A, which
is denoted by CPT(HB,HA).

Given a CPT map Ê ∈ CPT(HB,HA), one can associate a state ρ̂ ∈ D(HA ⊗ HB) in the
following canonical way:

Ê −→ ρ̂ = (Ê ⊗ Î)(β̂), (38)

where β̂ = |φ〉〈φ| ∈ D(HB ⊗ HB) denotes a maximally entangled state, for instance
|φ〉 = 1√

NB

∑NB

α=1 |α〉|α〉, and Î is the identical map in the system B.

A CPT map Ê is said to be entanglement breaking (EB) if Ê ⊗ Î maps any state into a
separable one [26]. One can show that a CPT is EB if and only if the map Ê ⊗ Î transforms a
maximally entangled state into a separable one. It follows that the CPT map is EB if and only
if the canonically associated state is separable.

One can select a local orthogonal basis F̂ A
(mn) = |m〉〈n| and F̂ B

(μν) = |μ〉〈ν| and write the
matrix elements of the CPT map in that basis as follows:

E(mn)(μν) = tr
(
F̂ A

(mn)Ê
(
F̂ B

(μν)

))
. (39)

It is easy to check that, with the canonical association (38), the matrix representation of
the state ρ̂ and the map Ê are related in the following way:

ρ(iα)(jβ) = 1

NB
E(ij)(αβ). (40)

Following the definition in [12], it is immediate to recognize that, apart from the
normalization factor 1/NB, the matrix expression of Ê is identical to the realigned matrix
ρR (see equation (9)). Identifying the CPT map with the realigned matrix of the corresponding
density matrix, one can consider the characteristic polynomial

PE(x) = det(|E| − xI), (41)

where |E| =
√
E†E and E ≡ E(ij)(αβ). To fix the ideas, let us consider the case in which E has

full rank. One obtains from (34) the following necessary condition for Ê to be entanglement
breaking:

det(|E|) �
(

NB

d

)d

. (42)

The determinant of quantum channels was also considered in [27], in which some of its
properties were presented and discussed in the context of factorization of CPT maps. The

12
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present result relates a geometric property of the map, such as the rate of contraction of volume
(which is equal to det(|E|)), to the property of being entanglement breaking. Analogously,
from (36), if the matrix E(ij)(αβ) has rank R, we can write the following necessary conditions
for Ê to be entanglement breaking:

M[l] (|E|) �
(

R

l

)(
NB

R

)l

(43)

for l = 1, . . . , R.

6. Beyond the realignment criterion

In section 4, we introduced a family of separability conditions which are weaker than (or
equivalent to) the RC. In this section, we argue about the possibility of extending the family of
separability criteria defined in (35) in order to write criteria which are independent of the RC.
As a first step in this direction, we may ask whether it is possible to find strict upper bounds
xl(d, D) such that

ρ̂ separable ⇒ M[l] � xl(d, D) <

(
d

l

) (
1

d

)l

. (44)

However, in the following we consider a weaker statement9, namely

M[1] � 1 ⇒ M[l] � x̃l(d, D) <

(
d

l

) (
1

d

)l

, (45)

which establishes a strict upper bound for the functionals M[l] over the set of states satisfying
the RC.

The following proposition holds true.

Proposition 4. The upper bounds x̃l(d, D) in equation (45) exist for D < d3.

Proof. The proposition is proven by contradiction. Let us suppose the existence of a density
matrix ρ0 such that M[1] � 1 and the inequalities in (35) are saturated. This implies that the
density matrix has the maximum rank, R = d, and all its SCs are equal to d−1. Hence, referring
to the singular value decomposition in equation (10), we can write the Schmidt decomposition
of the density matrix in the following way:

ρ0(αi)(βj) = 1

d

d∑
k,l=1

u(αβ)(kl)v
∗
(kl)(ij), (46)

where v(ij)(i ′j ′) and u(αβ)(α′β ′) are respectively the entries of the unitary matrices V and U (see
equation (10)), with dimensions N2

A and NB
2. We introduce the following notation:

u(αβ)(kl)v
∗
(kl)(ij) = 〈v̂ij , ûαβ〉, (47)

where ûαβ and v̂ij indicate the vectors respectively defined as the rows and the columns of the
matrices U and V . We have

tr(ρ0) = 1

d2

∑
i,α

〈v̂ii , ûαα〉 = 1

d2

〈
NA∑
i=1

v̂ii ,

NB∑
α=1

ûαα

〉
, (48)

9 Note that (45) is weaker as a separability criterion, while it is stronger in the sense that (45) implies (44). In
particular, xl(d, D) � x̃l (d, D)
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(a) (b)

Figure 2. A pictorial representation of the set of the equivalence classes, for the generic case
d 
= D (a) and for the degenerate one d = D (b). The Schmidt coefficients are represented along
the axes. States are contained in the colored region, which fulfills the constraints on the purity (7).
The region on the bottom left of the solid line fulfill the RC (hence separable states are contained
in this region). The region on the bottom left of the dashed line contains the states that fulfill
one of the naive inequalities (35) for some l > 1. Finally, the region on the bottom left of the
dot-dashed line contains the states that fulfill the proposed criterion RCl. Note that the RC (or
RC1) bounds separable states with a hyperplane, while the higher order RCl, for l > 1, bounds the
set of separable states with nonlinear hypersurfaces. Note that the RCls can in principle allow a
finer characterization of entangled states.

and we obtain

tr(ρ0) = |tr(ρ0)| =
∣∣〈 ∑

i v̂ii ,
∑

α ûαα

〉∣∣
d2

�
∣∣∑

i v̂ii

∣∣∣∣∑
α ûαα

∣∣
d2

=
√

NANB

d2
(49)

(the last equality holds true since ûαα and v̂ii are two systems of orthonormal vectors) which,
for D < d3, is in contradiction with the hypothesis that ρ0 has unit trace. Since the set of states
satisfying the RC is compact and the symmetric polynomials M[l] are continuous functionals,
the lower upper bounds x̃l(d, D) do exist. �

In the following, we indicate with RCl the suggested criterion

ρ̂ separable ⇒ M[l] � xl(d, D). (50)

Figure 2 shows a pictorial representation of the relation between the parent RC, the weaker
criteria (35) and the proposed extensions RCl. As the figure suggests, the RCl can in principle
be used, with respect to the information given by the RC, as refinements of the knowledge
about the region of separable states.

It is worth noting, however, that there are still two main open problems:

(i) the actual values of the upper bounds xl(d, D) (as well as x̃l(d, D)) are still undetermined,
(ii) it is not clear whether the criteria RCl are independent of the RC, i.e. if there are entangled

states such that RC is not violated while RCl is for some l > 1. That is equivalent to the
strict inequality xl(d, D) < x̃l(d, D).

In the following section, we face these problems with a numerical approach. We
are going to restrict our discussion to the case of lower dimensional systems, namely
HA ⊗ HB = C

2 ⊗ C
2, C

2 ⊗ C
3. For these cases, one can exploit the fact that the PPT

(positive partial transpose) criterion [8] is necessary and sufficient for separability.

7. Examples for low dimensional systems

In analogy with what can be done for the RC (see, for instance, [19]), one could determine
the value of the strict upper bounds xl(d, D) by convex linearity starting from the properties
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Table 1. For a qubit–qubit system, the table shows the upper bounds on the sums of the symmetric
polynomials M[l]. yl(4) denotes the naive bounds (35). x̃l (4, 4) denotes the numerically estimated
strict bounds over the states satisfying the RC (45). Finally, xl(4, 4) indicates the numerically
estimated strict bounds over the set of separable states (44). Note that in this case, we found
xl(d, D) = x̃l (d, D) suggesting that the criteria RCl cannot be independent of the RC.

l = 1 l = 2 l = 3 l = 4

yl(4) 1 0.3750 0.06250 0.003906
x̃l (4, 4) 1 0.3333 0.04630 0.00231
xl(4, 4) 1 0.3333 0.04630 0.00231

Table 2. For a qubit-a qutrit system, the table shows the upper bounds on the sums of the symmetric
polynomials M[l]. yl(4) denotes the naive bounds (35). x̃l (4, 9) denotes the numerically estimated
strict bounds over the states satisfying the RC (45). Finally, xl(4, 9) indicates the numerically
estimated strict bounds over the set of separable states (44). Note that in this case, we found
xl(d, D) < x̃l(d, D) suggesting that the criteria RCl can be in principle independent of the RC.

l = 1 l = 2 l = 3 l = 4

yl(4) 1 0.3750 0.06250 0.003906
x̃l (4, 9) 1 0.3583 0.05533 0.003133
xl(4, 9) 1 0.3469 0.05249 0.00291

of pure separable states. Nevertheless, it is worth noting that this can be a rather difficult task
since the symmetric polynomials M[l] are not easy to manipulate with respect to the convex
structure of the set of separable states. For this reason, in the following we present a numerical
analysis which allows us to present some interesting results.

For a preliminary analysis of the potentialities of the proposed family of criteria, they
have been numerically tested in the case of a bipartite qubit–qubit and qubit–qutrit system. A
numerical search of the upper bounds can be done by exploiting the PPT criterion [8]. The
constraints ρ � 0 and ρTA � 0, where TA indicates the partial transposition, are known to be
necessary and sufficient to characterize separable states in the low dimensional cases. Hence,
the determination of the lower upper bounds xl(d, D) reduces to a problem of constrained
maximization.

We have numerically estimated the maxima of the functions M[l] over separable states
(hence determining estimates for xl(d, D)) and over the set of states satisfying the RC (hence
estimating the upper bounds x̃l(d, D)). For a qubit–qubit system (d = D = 4), the results
are shown in table 1 together with naive bounds in (35). The analogous quantities are shown
in table 2 for the case of a qubit–qutrit system (d = 4, D = 9). In the latter case, we found
xl(d, D) < x̃l(d, D) suggesting that the criteria RCl can be in principle stronger than the RC.
Figures 3 and 4 show the maxima of the functionals M[l] for l = 2, 3, 4, computed for fixed
values of M[1], respectively for qubit–qubit and qubit–qutrit systems, as functions of the value
of M[1]. The maxima are computed over generic states and over separable states. In the case
of a qubit–qutrit system, the plots show the region in which the criteria RCl can in principle
be stronger than—or independent to—the RC.

To conclude this section, we consider the case of 2-qubit (generalized) Werner states of
the form

ρ̂p = p|φ〉〈φ| + (1 − p)Î/4, (51)
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Figure 3. Numerically estimated upper bounds of the symmetric polynomials M[2](a), M[3] (b)
and M[4] (c), as functions of the value of M[1] for a qubit–qubit system: naive upper bounds
(dash-dotted line) and numerically estimated upper bounds over the set of separable states (solid
line) which coincide with upper bounds over the set of all states (separable and entangled).
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Figure 4. Numerically estimated upper bounds of the symmetric polynomials M[2] (a), M[3] (b)
and M[4] (c), as functions of the value of M[1] for a qubit–qutrit system: naive upper bounds (dash-
dotted line) and numerically estimated upper bounds over the set of separable states (solid line)
and over the set of all states (dashed line). Note the presence of a region in which the functionals
have a lower upper bound over the set of separable states.

for p ∈ [0, 1], where |φ〉 indicates a maximally entangled pure state. The Schmidt coefficients
of the state (51) are easily calculated to be {1/2, p/2, p/2, p/2}, yielding

M[1] = (1 + 3p)/2

M[2] = 3(p + p2)/4

M[3] = (3p2 + p3)/8

M[4] = p3/16.

(52)

Note that the symmetric polynomials are monotonically increasing functions of the state
parameter p. It was shown in [28] that the realignment criterion is necessary and sufficient
for this family of states (indeed it is so for all the two-qubit states with maximally disordered
subsystems). The state in (51) is known to be separable for p ∈ [0, 1/3] and entangled
otherwise. We can compute the maximal value of the symmetric polynomials M[l] over the
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separable states in that family. These maxima are reached in correspondence of the value
p = 1/3, hence yielding

ρ̂p separable ⇒
M[1] � 1
M[2] � 1/3
M[3] � 5/108 � 0.04630
M[4] � 1/432 � 0.00231.

(53)

Note that the values in (53) computed for 2-qubit generalized Werner states saturates the
numerical estimated upper bounds reported in table 1.

8. Conclusions

The main goal of the present paper is to bring attention to the Schmidt coefficients of a
bipartite density operator and to their role for entanglement detection. The notion of Schmidt
equivalence classes has been introduced and a preliminary characterization of such classes has
been provided.

We have presented a family of separability criteria, written in terms of the Schmidt
coefficients, which are derived from the realignment criterion. These separability criteria are a
consequence of the fact that the symmetric polynomials in the Schmidt coefficients are upper
bounded on the set of separable states.

The application of that family of criteria to the study of quantum channels determines a
relation between a physical feature, such as the preservation of entanglement under the action
of the channel, and a geometrical quantity, such as the determinant—or the sum of principal
minors of order l—of a corresponding matrix.

We conjecture—also with support of numerical examples—that a strengthened version
of these criteria, independent of the realignment criterion, exists. In particular, we have given
numerical examples for the case of the qubit–qutrit system. These numerical results are of
course not sufficient for achieving independent separability criteria. However, they can open
the way to an analytical determination of stricter upper bounds on the symmetric polynomials,
and this may eventually lead to new separability criteria.
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